GENESIS-1: Co-location of Geodetic Techniques in Space

Markus Rothacher1), Urs Hugentobler2)
1) Institute of Geodesy and Photogrammetry, ETH Zurich
2) Institute for Astronomy and Physical Geodesy, TU Munich
Overview

• Introduction / History
• Motivation
• Unification of Reference Frames
• Science Objectives
• Benefits
• Conclusions
Introduction / History

- **GRASP** proposals to NASA (2011, 2015) have, unfortunately, not been selected (though, 2nd best mission proposal)
- **E-GRASP** proposal for Earth Explorer Opportunity Mission EE-9 submitted in June 2016 (17 proposals, 5 evaluated, none selected)
- Revised Call for Proposals issued by ESA in December 2016
- **Updated E-GRASP** proposal resubmitted in June 2017 by the E-GRASP/Eratosthenes team, very good evaluation, but not selected
- **E-GRIP** satellite mission proposal in 2016 in Switzerland (Call for small satellite mission), relativity tests and co-location, too expensive
- **NanoGEM, NanoX**: micro-satellite proposals with co-location idea of GFZ with partners
- **APOD**: Chinese cubesat mission was realized in 2015 with SLR, GNSS, VLBI: problems with some instruments, limited resources
Co-location of Geodetic Techniques in Space exists already now

- **Satellite altimetry**: Topex/Poseidon, Jason-1 etc. missions with GPS, DORIS and SLR onboard
 - Extreme improvements in LEO orbit determination
 - Missing: VLBI
- **GNSS**: GLONASS, Galileo, Beidou, (GPS) with SLR retro-reflectors
 - Interesting co-location studies
 - Missing: VLBI, DORIS
- **LEO satellites**: GPS (now GNSS) and SLR on many geodetic LEO satellites
 - Missing; VLBI, mostly also DORIS
- **APOD** (Atmospheric density detection and Precise Orbit Determination): Chinese cubesat mission with VLBI, SLR, GNSS
 - Missing: DORIS

→ no dedicated mission with all techniques
Motivation for GENESIS-1

- GGOS requirements (1 mm accuracy, 0.1 mm/y stability) are far from been met (presently rather on the 1 cm level)

- Two main limiting factors of the ITRS realization:
 1. Difficulty to accurately measure the local ties between the reference points (intersection of axes of large instruments, phase centers of antennas)
 2. Each space geodetic technique suffers from its own systematic effects (range biases, phase centers, multipath, gravitational sag, tropospheric refraction, quasar structures, ...)

- Fundamental improvement with GENESIS-1:
 1. Complementary, highly accurate co-location of all four space geodetic techniques in space, on the same satellite platform
 2. Particular attention paid to the time and space metrology on board
Measurement of Local Ties at Ground Stations

Hartebeesthoek (HRAO)
Quality of ITRF2014 Co-locations on Ground

- 1499 stations located in 975 sites
- 91 co-location sites with 2 or more instruments which were or are currently operating
- Co-locations:
 - 40 GNSS – VLBI
 - 33 GNSS – SLR
 - 46 GNSS – DORIS
- “Tie discrepancies” means differences between terrestrial ties and space geodesy estimates

Percentage of tie discrepancies

<table>
<thead>
<tr>
<th></th>
<th>< 5 mm</th>
<th>> 5 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNSS – VLBI:</td>
<td>42 %</td>
<td>58 %</td>
</tr>
<tr>
<td>GNSS – SLR:</td>
<td>29 %</td>
<td>71 %</td>
</tr>
<tr>
<td>GNSS – DORIS:</td>
<td>23 %</td>
<td>77 %</td>
</tr>
</tbody>
</table>

Altamimi et al., Review of IDS contribution to ITRF2014, IDS workshop 2016
Technique-specific Systematic Effects

- Uncalibrated phase center pattern of beacons
- Suffering from South Atlantic Anomaly
- Effects of solar radiation pressure (e.g. Z-geocenter component)
- Phase center offsets and variations of receiver and satellite antennas (affecting TRF scale)
- Extreme number of discontinuities in the position time series due to equipment changes
- Orbit modeling deficiencies (draconitic effects)
- Inhomogeneous network geometry
- Station and satellite range biases
- Station time biases
- Sparse network
- Gravitational sag of telescope
- Thermal deformation of telescope
- Quasar structures
Unification of Space and Time Reference Systems

Co-location in space

Co-location on ground

Complementary

Global Geodetic Observing System

genetic tie
clock tie
atmospheric tie
Unification in Parameter Space

<table>
<thead>
<tr>
<th>Classification</th>
<th>Type</th>
<th>Parameter</th>
<th>VLBI</th>
<th>GNSS</th>
<th>SLR</th>
<th>DORIS</th>
<th>LLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>common, global</td>
<td>Satellite orbits</td>
<td>GNSS orbits</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEO orbit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEO clock</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GENESIS-1 orbit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GENESIS-1 clock</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EOP</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pole coordinates</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UT1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOD (Length of Day)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nutation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nutation rates</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Gravity field</td>
<td>Earth’s center of mass</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low-degree coefficients</td>
<td>(✓)</td>
<td>✓</td>
<td>✓</td>
<td>(✓)</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scale</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>common, local</td>
<td>Atmosphere</td>
<td>Ionospheric parameters</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tropospheric parameters</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Station positions</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Station velocities</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Station clocks</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>technique-specific</td>
<td>CRF</td>
<td>Quasar positions</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moon orbit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Instrumental</td>
<td>GNSS clock</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Range biases</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Mission Characteristics

On-board co-location of DORIS, GNSS, SLR, VLBI → aiming at determining intersystem biases < 1 mm

Precise clock (USO) for synchronization
→ on-board synchronization of GNSS-DORIS-VLBI-SLR data (common clock)

High circular orbit for long baseline visibility
→ 6000 km altitude

Possible additional payload for precision
→ accelerometer to measure surface accelerations to 10^{-11} m/s²/√Hz (linear acc.) and the center of mass position to 0.1 mm (angular acc.)

The whole for TRF objectives
→ global accuracy of 1 mm and stability of 0.1 mm/yr improved by a factor 5 w.r.t current knowledge
Science Objectives in Earth Sciences

- Earth Rotation
- Tectonic motion & deformation
- Ice melting through satellite altimetry
- Precise Orbit Determination
- Post-Glacial Rebound
- Sea-level variations via satellite and tide gauges
- Volcano eruptions & their observations
- Co & Post-Seismic deformations
- Crust response to loading effects
- Accuracy of the RF parameters: 1 mm & 0.1 mm/yr
Science Objectives

Reference Frames and Earth Rotation
- Unification of reference frames and Earth rotation
- Geocenter and scale

Earth Sciences
- Long-wavelength gravity field
- Altimetry and sea level rise
- Determination of ice mass loss
- Geodynamics, geophysics, natural hazards
- Thermospheric density measurements, improvements in the Earth radiation budget

Positioning and Navigation
- Improvement in global positioning
- GNSS antenna phase center calibration
- Positioning of satellites and space probes
- Time transfer over intercontinental distances
Resolution on the global geodetic reference frame for sustainable development:

Goals: natural hazard and disaster
To make good decisions for the future, information is needed about sea level changes, plate movements, land uplift and ice sheet and glacier changes. The global geodetic reference frame provides the basis for such decisions. Without this system, it would be difficult to identify areas under threat of flooding, earthquakes or drought and to adopt preventive measures to protect them.

Needs: more precise observations
Earth observations must become more precise. We require information about current trends at a scale measured in millimeters to detect changes of the Earth system with sufficient precision, to meet society’s future needs.

Report of the UN expert committee on "Global Geospatial Information Management“ (2014)
Transformation parameters w.r.t. ITRF2014

ITRFs are aligned within the cm level in translation, scale and rotation, even much better for last realizations.

3 ppb ⇔ ~2 cm
.3 mas ⇔ ~1 cm
ITRF comparisons on SLR stations

Evolution of some ITRF realizations in terms of SLR station positions and velocities

Comparisons of station positions more consistent when using ITRF2014 velocities. The global standard deviation on coordinate differences remains within 1 to 2 cm.

Velocity standard deviations improve by a factor of ~6 over 20 years (1994-2014) up to ~0.6 mm/yr.
Connection: Geometry, Gravimetry, Altimetry

Mission types... provide
Geometry Reference system and orbit
Gravimetry Geoid
Altimetry Topography and sea surface
Impact of TRF on sea level height from altimetry

Effect of reference frame difference between ITRF2014 and ITRF2008:
Jason-3 radial orbit difference (cycle 1-22 / 2016)
Jason-2 regional sea level trend (2008 - 2016)

Radial orbit differences exhibit a degree 1 pattern with a 3 mm amplitude

Zonal bias and peak differences reach 0.2 mm/yr at high latitudes

Lemoine et al., Status of POD for Altimeter Satellites at GSFC, OSTST 2016
Tide Gauge Vertical Motions

Availability of GPS@TG results: www.sonel.org

The University of La Rochelle (ULR6) solution

Median: 0.36 mm/yr

Santamaría-Gómez et al., 2016
GENESIS-1: new step to quantify sea level rise

Precision Geodesy

Decadal Survey Missions

NRC Report
Precise Geodetic Infrastructure
Courtesy of Bernard Minster

GENESIS-1 Workshop 2022, 26.04.2022 | 20
ITRF and GIA model comparison

Geophysical processes affect TRF velocities:
- plate tectonics
- glacial isostatic adjustment
- present ice melting (loading)

ITRF2014 – GNSS vertical velocities:
- merge past and present climatic signatures

Métilvier et al., 2016

Vertical velocities induced by the post-glacial rebound (ICE6G; Peltier et al., 2016)

Quadratic means between modelled and observed vertical velocities for different ITRF solutions

Métilvier et al., 2016
Calibration of GNSS antennas for better positioning

Improving radial biases in altimetry

GNSS antenna pattern calibration

Nominal (Gipsy) Model
GRACE-Based GPS APV Maps
GENESIS-1: Conclusions

- Improving the TRF precision by a unique system, integrating all space geodetic techniques on one platform, with orbit and calibration optimized, in order to meet the present-day science requirements. The TRF available today needs an improvement by a factor of about 5, as a minimum (recent ITRF2020 results).

- The accuracy of the TRF impacts directly the orbit quality of altimetry satellites and land motion estimation at tide gauges and consequently the quantification of the sea level variations in space and time.

- More generally, global studies on the mass budget of the earth-ocean-atmosphere system and on global tectonics require an accurate TRF.

- “Earth observations must become more precise. We require information about current trends at a scale measured in millimeters to detect changes of the Earth system with sufficient precision, to meet society’s future needs”, *Report of the UN expert committee on "Global Geospatial Information Management“, 2014.*
Remarks concerning the GENESIS-1 Science

- Stress the benefits for the radar and laser altimetry satellite missions and for the various Sentinel missions (e.g. Sentinel-1, 3, 6)
- Mention the usefulness for the SAR missions (e.g. absolute positioning, earthquakes, volcanoes)
- Mention the term "fundamental site in space" (if not done yet) connecting all the sites
- Argue that GENESIS-1 is the only feasible way to reach the required improvement of the TRF
- Mention the Living Planet Scientific Challenges GENESIS-1 will be contributing to (C2-C5, L2, L3, O1, O2, O5, G1-G4)
- Mention tide gauges with GNSS and GNSS leveling, as they are also profiting from GENESIS-1
- Discuss the issue of systematic errors between the techniques (e.g. VLBI and SLR scale, local ties, etc.)