Status of ITRF and interest of GENESIS-1

Zuheir Altamimi: President, International Association of Geodesy (IAG)

Contribution of ITRF Team: Paul Rebischung Xavier Collilieux Laurent Métivier Kristel Chanard

IGN-IPGP, France

Key points

- Introduction
- Why is the ITRF needed ?
- Uncertainty evaluation of the ITRF solutions
 - Currently operating sites
 - Reference frame definition/specification: origin, scale & orientation
 - Agreement between terrestrial ties and space geodesy estimates at colocation sites
- Future needs to sustain and improve the accuracy of the ITRF
 - Contribution of GENESIS-1 type mission: Expected benefit
- Conclusion & questions for discussion

The International Terrestrial Reference Frame (ITRF): Realization of the International Terrestrial Reference System (ITRS)

- Realized and maintained by ITRS Center of the IERS, hosted by IGN
- Materialized by a set of station positions and velocities (+ parametric models), estimated by combination of VLBI, SLR, GPS and DORIS individual TRF solutions

Yarragadee : A famous co-location site

Why is the ITRF needed?

Operational geodesy applications:

- National geodetic systems/frames
- Positioning : Real Time or a posteriori
- Navigation: Aviation, Terrestrial, Maritime
- Today: via GNSS only!
- Require the availability of the orbits and the reference frame (ITRF)
- Many, many users...

GNSS-specific reference frames:

• GTRF, WGS84, PZ-90, CGCS2000, JGS

cnrs

• All are aligned to the ITRF

IGN

<u>Continuous</u> observations are fundamental

Mean sea level change

CN

Resolutions on ITRS & ITRF

- <u>IUGG2007</u>: adopted the ITRS as the preferred Geocentric Terrestrial Reference System (GTRS) for scientific and technical applications
- <u>CGPM2011</u>: recommends that the ITRS, as defined by the IUGG and realized by IERS, be adopted as the unique international reference system for terrestrial reference frames for all metrological applications
- ICG: recommendation to align GNSS-specific reference frames (WGS84, PZ90, GTRF, CGCS2000, JGS) to the ITRF
- <u>IUGG2019</u>: recommend to the user community that the ITRF be the standard for positioning, satellite navigation and Earth Science applications, ...
- <u>UN-GGIM-2019</u>: adoption of the ITRS and the ITRF as the standard for scientific, geospatial and operational geodetic applications
- ISO Standard on ITRS/ITRF

ITRF2020 Input Data

ТС	# of solutions	Time-span	# of sites	Theoretical Frame Origin
IDS/DORIS	1456 weekly	1993.0 – 2021.0 (<mark>28 yrs</mark>)	87	СМ
IGS/GNSS/GPS	9861 daily	1994.0 – 2021.0 (27 yrs)	1159	CN
ILRS/SLR	243 fortnightly1460 weekly	1983.0 - 1993.0 1993.0 - 2021.0 (38 yrs)	100	СМ
IVS/VLBI	6178 session-wise	1980.0 – 2021.0 (<mark>41 yrs</mark>)	117	CN

IDS/DORIS

IGS/GNSS

ILRS/SLR

IVS/VLBI

UNIVERSITÉ DE LA RÉUNION

ITRF2020 Network

➤ 1223 sites

- > 878 Northern hemisphere
- > 355 Southern hemisphere
- > 1800 stations
- > 3106 discontinuities
- ➤ ~1159 GNSS sites
 - ➤ 1344 stations

2938 discontinuities

Current ITRF colocations (with GNSS)

VIENTIAL COST VIENTIÉ

Current ITRF colocations

SLR ~30 sites

VLBI ~44

Ny-Ålesund. Photo: Bjørn-Owe Holmberg

GENESIS-1 Workshop, April 26, 2022

IGN

CNrs

ITRF Origin: Inherited from SLR long-term CM origin

GNSS frame origin is not reliable

ET FORESTIÈRE

DORIS, SLR & VLBI scales wrt ITRF2014

DORIS SLR VLBI

IGN

cnrs

Scale of ITRF2020?

- This is the first time of ITRF history where we have 4 independent and competitive scales stemming from the 4 techniques (DORIS, GNSS, SLR and VLBI)
- IGS / GNSS scale is based on z-PCOs for Galileo Satellites, using 3.7 yrs of Galileo data
- Improved ILRS / SLR scale determination with enhanced handling of range biases

Relative Scales

Orange: all VLBI Sessions

IGN

- Red: Selected VLBI Sessions (Solid Volume $\geq 10^{19} \text{ m}^3$)
- Light blue: all SLR time series
- Dark blue: Selected SLR time series
- Green: IGS/Repro3
- Black: DORIS

Relative Scales

GENESIS-1 Workshop, April 26, 2022

cnrs

ITRF : Uncertainty in the frame definition/specification

- **<u>Origin</u>: Rely on one technique : SLR**
 - Long-term uncertainty: at epoch 2015.0: up to 3 mm
 - Stability / rate : up to 0.3 mm/yr

- <u>Scale</u>: Average of SLR & VLBI
 - Long-term uncertainty (level of agreement between SLR & VLBI):
 - ITRF2014: 1.4 ppb (~8 mm at the equator)
 - ITRF2020: 0.15 ppb (~1 mm at the equator)
 - Stability / rate : depend on "agreement of site velocities"

IGN

– SLR & VLBI scale time series are not linear!!

Cnrs

- <u>Orientation</u>: Alignment of successive ITRF solutions using a selection of reference frame stations
 - Long-term & stability / rate uncertainty : dictated by the so-called network effect: up to 30µas (1mm)

ITRF2020: Local tie Discrepancies

LT Discrepancies: Differences between terrestrial ties and space geodesy estimates Local tie vectors between GNSS and the 3 other techniques at co-location sites

GNSS to :	Total tie vectors ITRF2014 / ITRF2020	Discrepancy < 5 mm	% Discrepancy < 5 mm
VLBI	60 / 77	27 / <mark>38</mark>	45 / <mark>50</mark>
SLR	49 / 53	14 / <mark>19</mark>	29 / <mark>36</mark>
DORIS	103 / 123	23 / <mark>39</mark>	22 / <mark>32</mark>

Summary (1/2)

• ITRF current status:

- Fundamentally based on colocations: Strengthen ITRF parameters (origin, scale, orientation)
- ITRF parameters needs improvement and sustainability by a factor of 3, at least.
- SLR & VLBI are critical for the frame definition : origin (SLR), scale (SLR & VLBI)
- SLR & VLBI collocations (~ 10 sites) are poorly distributed
- > 50 % of SLR & VLBI are old-generation systems
- Quantitatively : Data yield is poor for both techniques
- GNSS links together SLR, VLBI & DORIS networks

IGN

- More than 50 % of tie discrepancies are larger than 5 mm,
- Caused mainly by technique systematic errors

• What are the alternatives to improve and sustain the ITRF in the long-term?

Summary (2/2): ITRF and space ties

- <u>Alternative</u>: GENESIS-1_type mission:
 - Should include sensors of the 4 techniques (DORIS, GNSS, SLR & VLBI) at one platform
 - Core colocation site in space
 - Fully calibrated satellite-based platform: this is fundamental
- Questions for discussion:
 - How to mitigate technique systematic errors ?
 - How to improve the ITRF origin / geocenter: Adding an accelerometer ?
 - How to improve the long-term ITRF scale ?
 - How to improve the Ground Infrastructure (?), especially SLR & VLBI
 - Lifetime (?) of GENESIS-1_type mission, noting the need for continuous observations
 - Multiple GENESIS missions ?

CNrs

